References
Firke, S. (2024). Janitor: Simple tools for examining and cleaning
dirty data. https://github.com/sfirke/janitor
Gorman, K., Williams, T., & Fraser, W. (2014). Ecological sexual
dimorphism and environmental variability within a community of antarctic
penguins (genus pygoscelis). PLos One, 9(3), e90081.
https://doi.org/10.1371/journal.pone.0090081
Hartig, F. (2024). DHARMa: Residual diagnostics for hierarchical
(multi-level / mixed) regression models. http://florianhartig.github.io/DHARMa/
Hester, J., Wickham, H., & Csárdi, G. (2025). Fs: Cross-platform
file system operations based on libuv. https://fs.r-lib.org
Iannone, R., Cheng, J., Schloerke, B., Haughton, S., Hughes, E., Lauer,
A., François, R., Seo, J., Brevoort, K., & Roy, O. (2025). Gt:
Easily create presentation-ready display tables. https://gt.rstudio.com
Ihaka, R., Murrell, P., Hornik, K., Fisher, J. C., Stauffer, R., Wilke,
C. O., McWhite, C. D., & Zeileis, A. (2025). Colorspace: A
toolbox for manipulating and assessing colors and palettes. https://colorspace.R-Forge.R-project.org/
Kuznetsova, A., Bruun Brockhoff, P., & Haubo Bojesen Christensen, R.
(2020). lmerTest: Tests in linear mixed effects models. https://github.com/runehaubo/lmerTestR
Lüdecke, D. (2025a). Ggeffects: Create tidy data frames of marginal
effects for ggplot from model outputs. https://strengejacke.github.io/ggeffects/
Lüdecke, D. (2025b). sjPlot: Data visualization for statistics in
social science. https://strengejacke.github.io/sjPlot/
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., Waggoner, P.,
Wiernik, B. M., & Thériault, R. (2025). Performance: Assessment
of regression models performance. https://easystats.github.io/performance/
Meyer, F., & Perrier, V. (2025). Esquisse: Explore and visualize
your data interactively. https://dreamrs.github.io/esquisse/
Müller, K. (2025). Here: A simpler way to find your files. https://here.r-lib.org/
Ou, J. (2021). colorBlindness: Safe color set for color
blindness.
Pedersen, T. L. (2025). Patchwork: The composer of plots. https://patchwork.data-imaginist.com
Robinson, D., Hayes, A., Couch, S., & Hvitfeldt, E. (2025).
Broom: Convert statistical objects into tidy tibbles. https://broom.tidymodels.org/
Spinu, V., Grolemund, G., & Wickham, H. (2024). Lubridate: Make
dealing with dates a little easier. https://lubridate.tidyverse.org
van den Brand, T. (2025). ggh4x: Hacks for ggplot2. https://github.com/teunbrand/ggh4x
Wickham, H. (2023). Tidyverse: Easily install and load the
tidyverse. https://tidyverse.tidyverse.org
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., Dunnington, D., & van den Brand, T.
(2025). ggplot2: Create elegant data visualisations using the
grammar of graphics. https://ggplot2.tidyverse.org
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D.
(2023). Dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org